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We consider algorithms that maximize a global function G in a distributed manner, using a dif-
ferent adaptive computational agent to set each variable of the underlying space. Each agent η is
self-interested; it sets its variable to maximize its own function, gη. Three factors govern such a
distributed algorithm’s performanc, related to exploration-exploitation, game theory, and machine
learning. We demonstrate how to exploit all three factors by modifying a search algorithm’s explo-
ration stage: rather than random exploration, each coordinate of the search space is now controlled
by a separate machine-learning-based “player” engaged in a non-cooperative game. Experiments
demonstrate that this modification improves Simulated Annealing (SA) by up to an order of magni-
tude for bin-packing and for a model of an economic process run over an underlying network. These
experiments also reveal novel small worlds phenomena.
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I. INTRODUCTION

Many systems found in nature have inspired com-
putational algorithms for how to maximize a provided
high-dimensional function. In some of these algorithms
the values of the underlying coordinates are controlled
by separate players engaged in a non-cooperative game;
their equilibrium joint state (hopefully) maximizes the
provided global function G. Examples of such systems
are auctions and clearing of markets. Typically, in the
computational algorithms inspired by such “collectives”
of players, each “player” is instantiated as a separate
machine learning algorithm [3, 6], e.g., a reinforcement-
learning (RL) algorithm [10, 14].
There are three crucial issues concerning such collec-

tives. The first is whether the payoff function gη of each
player η is sufficiently sensitive to the coordinate η con-
trols in comparison to the other coordinates. If this is
not the case, it is not feasible for η to learn how to set
its coordinate to achieve high payoff. The second crucial
issue is the need for all of the gη to be “aligned” with G,
so that as the players individually learn how to increase
their payoffs, G also increases.
Other collective systems found in nature that have

inspired function-maximization algorithms do not in-
volve players conducting a non-cooperative game. Ex-
amples include equilibrating spin glasses, genomes un-
dergoing neo-Darwinian natural selection, and eusocial
insect colonies. These have been translated into sim-
ulated annealing (SA [7]), genetic algorithms [1], and
swarm intelligence [2], respectively. The third crucial is-
sue is most prominent in such algorithms: the need to
tradeoff exploration and exploitation.
Recent analysis [12] reveals that a collective’s G value

is governed by the interaction between these three ef-
fects: the alignment of the gη with G, the “learnabil-
ity” of the gη, and the exploration/exploitation tradeoff
[13]. These three issues are traditionally studied in three
separate fields: game theory, machine learning/statistics,
and optimization theory, respectively. So any complete

science of collectives must incorporate insights from all
three fields; no single one of the fields suffices.

Previous work in the COllective INtelligence (COIN)
framework has partially accomplished this, addressing
the first two issues. That work is an extension of game-
theoretic mechanism design, to include off-equilibrium
behavior, learnability issues, non-human gη (e.g., gη for
which incentive compatibility is irrelevant), and arbitrary
G [5, 9]. In domains from network routing to congestion
problems COIN-based algorithms beat traditional tech-
niques, by up to several orders of magnitude [13, 14].

Here we address all three issues at once, by replac-
ing the exploration step in any exploration/exploitation
search algorithm. In the new exploration step each
separate coordinate of the multi-coordinate space being
searched is made “intelligent”, its value being the move
of a player/agent designed using the COIN framework
(rather than the value of a random sample of a proposal
distribution). We call the class of such algorithms Intel-
ligent Coordinates for search (IC).

We concentrate on IC with SA as the exploration-based
search algorithm. Like SA, IC is intended to be used “off
the shelf”; rarely will it be the best possible algorithm
for a particular domain. Also like SA, IC is best suited to
very large problems (so parallelization can be exploited),
where there is little exploitable gradient information.

We present experiments comparing IC and SA on two
archetypal domains: bin-packing and an economic model
of people choosing formats for their home music systems.
In bin-packing IC achieves a given value of G up to three
orders of magnitude faster than does SA, an improve-
ment ratio that increases linearly with problem size. In
the format choice problem, each person η’s move is the
choice of which several formats to adopt, and G is the
sum of everyone’s “happiness” with their move. In turn,
η’s happiness with each of the formats making up her
move is set by three factors: which of her nearest neigh-
bors on a ring network (η’s “friends”) choose that format;
η’s intrinsic preference for that format; and the price of
music purchased in that format, inversely proportional
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to the total number of players using that choice. Here IC
improves G two orders of magnitude faster than SA. We
also tested an algorithm designed to “endogenize exter-
nalities”, in the language of economics; IC outperformed
it by over two orders of magnitude. We also replaced
the ring with a small-worlds network [11]. This barely
improved IC’s performance (3%), and had no effect on
the other algorithms. However if G too was changed, so
that η’s happiness depends on agreeing with her friends’
friends, the improvement is significant (10%).

II. SIMPLIFIED THEORY OF COLLECTIVES

Let z ∈ ζ be the joint move of all agents/players in the
collective, with agent η’s move being zη, and z−η being
the other agents’ moves. We wish to find the z maxi-
mizing the provided world utility, G(z). We also have
private utilities {gη}, one for each agent η. These are
the functions that the individual agents try to maximize.
It will be useful to “standardize” utility functions so

that the value they assign to z only reflects their ranking
of z relative to other possible points in ζ. Such a stan-
dardization is called intelligence, one form of which is

Nη,U (z) ≡

∫

dµz−η (z
′)Θ[U(z)− U(z′)] , (1)

where Θ is the Heaviside function, and where the sub-
script on the (normalized) measure dµ indicates it is re-
stricted to z′ such that z′−η = z−η. Intuitively, Nη,U (z) ∈
[0.0, 1.0] is the percentile rank of η’s choice of move in
comparison to her alternatives. The ranking is according
to utility U , and is in the context of the other agents
making move z−η.

We define ~NG and ~Ng as the vectors of the intelligences
of all agents, for the world utility and the agents’ separate
private utilities, respectively. Nη,gη (z) = 1 means that
agent η’s move maximizes its utility, given the moves of

the other agents. So in game theory terms, ~Ng(z) = ~1

means z is a Nash equilibrium. Conversely, ~NG(z
′) = ~1

means that the value of G cannot increase in moving from
z′ along any single coordinate of ζ.
Indicate the agents’ private utilities by s. Our un-

certainty about the system induces a distribution P (z).
Bayes’ theorem gives us the associated P (G | s):

∫

d ~NGP (G | ~NG, s)

∫

d ~NgP ( ~NG | ~Ng, s)P ( ~Ng | s) (2)

This is the central equation. Say that for some s the
third conditional probability in the integrand is peaked

near ~Ng = ~1, i.e., s probably induces large (private util-
ity) intelligences. If in addition the second probability

term is peaked near ~NG = ~Ng, then ~NG is also large. In

particular, if s guarantees that ~Ng equals ~NG identically
∀z, then the second term is a delta function, regardless
of P (z | s). Such a system is called factored. Finally,

say that in addition to such second and third terms, the

first term is peaked about high G whenever ~NG is large.
Then as desired, s (probably) induces high G.
The second term is related to game theory. As an ex-

ample, a team game, where gη = G ∀η, is factored [13].
However team games usually have poor third terms, espe-
cially in large collectives. This is because agent η chooses
its move based on what it can learn about the effect of
that move on gη. This learning is based on previous ob-
servations of what value gη had when η made its various
moves. These observations are necessarily made in the
presence of the (varying) moves of all the other agents.
So say gη = G, and the moves of the other agents affect
G comparably to how much η’s move does. Then when
there are many of those other agents, it will be difficult
to distinguish the “signal”, of the effect of η’s move on
the value of gη, from the “noise”, of the effect of other
agents’ moves. This will make it difficult for η to learn
how to make a move that has high intelligence for gη.
Term three is related to machine learning. Say that

we IID sample the values that the utility gη has when-
ever the move made by agent η is z1

η, and similarly for

when that move is z2
η. This gives us a training set

of move-utility pairs, nη. The associated learnability,
Λ(U ;nη, zη

1, zη
2) is defined as

|E(gη(zη
1, .) | nη)− E(gη(zη

2, .) | nη)|
√

V ar(gη(z1
η, .) | nη) + V ar(gη(z2

η, .) | nη)
, (3)

where the expectations and variances have η’s move fixed
as indicated, with z−η varying according to P (z−η | nη).
The denominator in Eq. 3 reflects the sensitivity of

gη(z) to z−η, while the numerator reflects its sensitivity
to zη. So the greater Λ(gη;nη, zη

1, zη
2), the more gη(z)

depends on which of those two moves agent η adopts, in
comparison to its dependence on the joint move of the
other agents. In other words, for larger learnability it is
easier for η to distinguish in nη how its choice between
those two moves affects gη (the signal), from how other
agents affect gη (the noise). Formally, the expected in-
telligence of agent η’s move is an increasing function of
the value of Λ(gη;nη, zη

1, zη
2) for all candidate pairs of

moves, zη
1, zη

2. So if s specifies a gη with high learnabil-
ity nη, term 3 will have the desired form.
A difference utility has the form gη(z) = G(z) −

D(z−η). Any such utility is factored [12]. The D(z−η)
that maximizes Λ(gη;nη, zη

1, zη
2), for all pairs zη

1, zη
2,

is
∫

dzηf(zη)G(zη, z−η) [12] (the form of the distribution
f is beyond the scope of this paper). The associated gη
is called the Aristocrat utility (AU). If η’s private util-
ity is AU rather than G, then the last two terms of the
central equation are more biased towards higher world
utility values. Another advantage is that AU is often
easier to evaluate than is G[13].
TheWonderful Life Utility (WLU) is an approxima-

tion of AU that avoids calculating expectation values by
adopting delta function f :

WLUη ≡ G(z)−G(z−η, CLη) , (4)
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where CLη is the clamping parameter. The choice of
CLη can be set to maximize learnability. (How best to do
this is beyond the scope of this paper; see below.) While
not matching that of AU , for most CLη values WLU ’s
learnability is better than a team game’s.
Finally, one way to address term 1 of the central equa-

tion is to incorporate exploration/exploitation techniques
like SA. We describe how to do this below.

III. EXPERIMENTS

In our version of SA, at the beginning of each time-step
t a proposal distribution hη(zη) is formed for every sepa-
rate coordinate η. Each such distribution assigns proba-
bility 75% to the move η had at the end of the preceding
time-step, zη,t−1, and uniformly divides probability 25%
across the other moves. The “exploration” joint-move
zexpl is then formed by simultaneously sampling all the
hη. If G(zexpl) > G(zt−1), zη,t is set to zexpl. Otherwise
zt is set by sampling a Boltzmann distribution over the
two z’s for “energies” G(zt−1) and G(zexpl), respectively.
Many different annealing schedules were investigated; all
results below are for best schedules found.
IC is identical except that each hη is replaced by
hη(zη)cη,t(zη)

∑

z′η
hη(z′η)cη,t(z′η) . To form cη,t, for each of its possible

moves zη, agent η collects those instances in its training
set for which the move was zη. It then forms a weighted
average of the associated gη values recoreded in the train-
ing set. (The weights decay exponentially with how old
that pair is, to reflect nonstationarity of the system.)
This gives an estimate of what gη is likely to be for each
move zη. cη,t then is the Boltzmann distribution over the
possible zη, parameterized by a “learning temperature”,
with the “energy” for each zη set to the associated esti-
mate of what gη is likely to be. (“COIN” algorithms just
use this Boltzmann distribution to give zt directly, with
no proposal distribution, keep/reject step, etc.)
In all our experiments “AU” used a mean-field ap-

proximation to pull the expectation inside the G(.) in
the evaluation of D(z−η). Unless otherwise specified, for

simplicity, CLη (used in WLU) was set to ~0.

Algorithm Ave. G Best Worst % Optimum

IC WLU 3.32 ± 0.22 2 8 72 %

IC TG 7.84 ± 0.17 6 10 0 %

COIN WLU 3.52 ± 0.20 2 7 64 %

COIN TG 7.84 ± 0.15 6 9 0 %

SA 6.00 ± 0.19 4 7 0 %

TABLE I: Bin-packing G at time 200 for N = 20, c = 12.

In the bin-packing problem, N items, all of size < c,
must be assigned into a minimal subset of N bins, with-
out assigning a summed size > c to any one bin. G of an
assignment pattern is the number of occupied bins [4],
and each agent controls the bin choice of one item. All
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FIG. 1: Average bin-packing G for N = 50, c = 10. All error
bars ≤ .31 except IC - AU and COIN - AU are ≤ .57.

algorithms use a modified “G”, Gsoft, even though their
performance is ultimately measured with G:

Gsoft ≡

{

∑N
i=1

[

(

c
2

)2
−

(

xi −
c
2

)2
]

if xi ≤ c
∑N

i=1

(

xi −
c
2

)2
if xi > c

, (5)

where xi is the summed size of all items in bin i.
In the IC runs learning temperature was .2, and all

agents made the transition to RL-based moves after a
period of 100 purely random z’s that was used to generate
the initial training sets {nη}. Exploitation temperature
started at .5 for all algorithms, and was multiplied by .8
every 100 exploitation time-steps. In each SA run, h was
slowly modified to generate solutions that differed less
from the current solution as time progressed.
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FIG. 2: G vs. c for N = 20 at t = 200. All error bars ≤ .34.

In Table 1 “Best” and “worst” give the extremal end-
of-the-run G values (25 runs total), and “%Optimum”
the percentage of runs within one bin of the best value.
Fig. 1 illustrates that the algorithms that account for
both terms 2 and 3 — IC WLU and COIN WLU —
far outperform the others, with the algorithm account-
ing for all three terms doing best. The worst algorithms
were those that accounted for only a single term (SA
and COIN TG). Linearly (i.e., optimistically) extrapolat-
ing SA’s performance from time 15000 indicates it would
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take over 1000 times as long as IC WLU to reach the
G value IC WLU reaches at time 200. In addition the
ratio of WLU’s time 1000 performance (relative to ran-
dom search) to SA’s grows linearly with the size of the
problem. Finally, Fig. 2 illustrates that the benefit of
addressing terms 2 and 3 grows with the difficulty of the
problem. In both figures SA outperforms IC - TG due to
its benefiting from more parameter-tuning.
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FIG. 3: G(t = 200) for 100 agents. In order from left to right,
D = {1, 1, 3, 3}, and topologies are {L,W,L,W}.

For the format choice problem G is the sum over all
Na agents η of η’s “happiness” with its music formats:

G =
∑Na

η=1

∑Nf

i=1

∑

η′∈neighη
ϑ(i) ωη,η′,i prefη,i, where

Nf is the numbers of formats; neighη is the set of players
≤ D hops away from player η; prefη,i is η’s intrinsic

preference for format i (randomly fixed ∈ [0, 1]); ϑ(i) is
the total number of players choosing format i (i.e., the
inverse price for format i); and ωi,η,η′ = 1 if the choices
of players η and η′ both include format i, 0 otherwise. η’s
move says which of four formats not to use. For example,
WLUη =

∑

η,i,η′∈neighη
ϑ(i) Ωη′,i prefη,i, where Ωη′,i =

−1 if agent η′’s choices include i but agent η’s do not, and
equals 0 otherwise . Both D = 1 and 3 were investigated.

In Fig. 3, “IC Econ” refers to WLU IC, with clamping
making the agent decline all formats. It is a crude way
of endogenizing externalities, and then rescaling and in-
terleaving with SA to improve performance. “IC-WLU”
instead clamps η’s move to zero (as per the theory of col-
lectives), so that η chooses all formats. Learning temper-
ature was .4, and exploitation temperature was .05 (an-
nealing provided no advantage since runs were short). We
used m-node ring topologies with an extra .06m random
links added, a new such set for each of the 50 runs giv-
ing a plotted average value. “Short links” (L) means all
extra links connected players two hops apart, and “small-
worlds” (W) means there was no such restriction.

IC Econ’s inferior performance illustrates the short-
coming of economics-like algorithms. For D = 1 SA did
not benefit from small worlds connections, and IC vari-
ants barely benefited ( 3%), despite the associated drop
in average inter-node hop distance. However if D also
increased, so that G directly reflected the change in the
topology, then the gain with a small worlds topology grew
to 10%.
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